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Abstract. We consider (e, 2e) processes on the 2s and 2p shells of argon and magnesium. We present triple
differential cross sections in coplanar asymmetric geometry calculated in the Plane Wave Born, 1st Born
and Distorted Wave Born approximations. We show that the currently available relative experiments can
not easily distinguish between these approximations. We make proposals for relative experiments where
the difference between these approaches can be more readily observed.

PACS. 34.80.Dp Atomic excitation and ionization by electron impact – 34.80.Pa Coherence and correlation
in electron scattering – 34.50.Fa Electronic excitation and ionization of atoms

Because of the smallness of the inner-shell cross sections
it is only in recent years that experimental techniques
have become sufficiently refined to make viable inner shell
(e, 2e) measurements. In this paper we are concerned with
the ionization from the 2s and 2p shells of Ar and Mg.

The first (e, 2e) measurement on Ar(2p) [1] were made
by Lahmam-Bennani et al. [2] at an impact energy of 8 keV
with further results being reported by [3–5], and at signif-
icantly lower impact energies by [6]. Very recently new ex-
perimental data has become available for Ar(2s), Mg(2s)
and Mg(2p), at impact energies of the order of 1 keV [7].

The physics one sees in a coincidence experiment is
predicated on the choice of geometry. The experiments,
to-date, have been performed in coplanar asymmetric ge-
ometry, (Fig. 1). This choice of geometry has been a fa-
vorite for experimental studies since being introduced by
Ehrhardt and his collaborators in one of the very first
(e, 2e) experiments. This choice of kinematics is ideal for
the application of perturbation theory to atomic outer
shells (for a review see [8]). A further feature of the re-
ported inner shell experiments is that they are all relative.
Putting (e, 2e) data, taken in the gas phase, on an abso-
lute scale is an enormously difficult task, see e.g. [9,10],
consequently it is of value to search out kinematics where
the difference between the theoretical approaches is clearly
visible in the shape of the cross sections. This is one of the
primary purposes of this paper.
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Fig. 1. Coplanar asymmetric geometry. An electron, momen-
tum, k0 is incident on an atom and two electrons are detected
with their angles and energies resolved left and right of the
beam direction, the faster of the two with momentum kf is
detected at an angle of magnitude θf measured in an anti-
clockwise direction with respect to the beam direction; the
slower electron with an angle, θs measured in a clockwise di-
rection with respect to the beam has momentum ks.

1 Theory

The Distorted Wave Born Approximation,
DWBA, [11–13] offers a straightforward and flexible
approach to the calculation of (e, 2e) processes. It has
proved particularly useful in identifying targets and
kinematics where multiple scattering effects are impor-
tant [6,13,14]. In this paper we will study the inner
shell ionization of argon and magnesium using the full
flexibility of the approximation to explore the ionization
mechanisms.
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In atomic units (� = me = e = 1) the triple differen-
tial cross section, TDCS, in the DWBA approximation for
closed shell atoms is of the form [12,13,15],

d3σDWBA

dΩfdΩsdE
= (2π)4

kfks

k0

∑

m

|fnlm|2 + |gnlm|2

−�e(f∗
nlmgnlm). (1)

The direct and exchange amplitudes are respectively

fnlm = 〈χ−
a (kf , rf )χ−

b (ks, rs)

× | 1
‖rf − rs‖|χ

+
0 (kf , rf )ψnlm(rs)〉 (2)

gnlm = 〈χ−
a (kf , rs)χ−

b (ks, rf )

× | 1
‖rf − rs‖|χ

−
0 (kf , rf )ψnlm(rs)〉 (3)

where we have used the notation of [15]. In the absence
of any distorting potentials the distorted waves, χ, reduce
to plane waves. In the extreme case when there is no dis-
torting potentials acting on any of the electrons then we
have the PWPWPW, or purely plane wave, case

fPWPWPW
nlm = (2π)−

9
2

∫
d3rsd

3rf e
−ikf ·rf e−iks·rs

× 1
‖rf − rs‖e

ik0·rfψnlm(rs). (4)

Now if we apply the Bethe integral relation
∫
d3rf

eiq·rf

‖rf − rs
‖ =

4π
q2
eiq·rs (5)

equation (4) becomes:

fPWPWPW
nlm =

4π
(2π)

9
2 q2

∫
d3reip·rψnlm(r) (6)

where q = k0 − kf and p = q − ks. If we can neglect the
exchange amplitude then we have

d3σPW

dΩfdΩsdE
= (2π)4

kfks

k0

∑

m

(|fPW
nlm |2) (7)

=
kfks

2π3(q)4k0

∑

m

|
∫
d3rse

ip·rsψnlm(rs)|2.
(8)

We immediately recognize the term
∫
d3rse

ip·rsψnlm(rs)
as the atomic wave function in momentum space ψ̂nlm(p).
Equation (8) defines the plane wave Born approximation,
(PWBA). The TDCS in the PWBA is thus crucially de-
pendent on the norm of the target wave function summed
over the magnetic quantum numbers m, and the vector
p. As is well-known, [16,17], the momentum space wave
function may be written ψ̂nlm(p) = Fnl(p)Ylm(p̂) where
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Fig. 2. The TDCS calculated in the PWPWPW approxima-
tion, (4) for coplanar asymmetric geometry plotted as a func-
tion of p = ‖k0 − kf − ks‖ where the fast electron having an
energy of 500 eV. The solid curve is argon 2s, with a slow elec-
tron energy of 56 eV and θf = 4◦. The dotted curve is argon
2p, with a slow electron energy of 46 eV and θf = 8◦.

the angular dependence is entirely in the spherical har-
monics, and Fnl is independent of m. Consequently (8)
may be written:

d3σPW

dΩfdΩsdE
= (2π)4

kfks(|Fnl(p)|2)
k0

∑

m

|Ylm|2. (9)

Now ∑

m

|Ylm|2 =
2l + 1

4π
(10)

(an elementary proof of (10) is given in Appendix below).
The TDCS depends only on the magnitude of p through
Fnl(p). The character of the target wave function is most
clearly seen in the region of p = 0.

This corresponds to

q − ks = 0 ⇒ ks = k0 − kf (11)

i.e. zero recoil of the ion. We take (11) as the defining
equation for the Bethe Ridge. In Figure 2 we present the
TDCS as a function of p = ‖p‖ calculated in the PW-
PWPW Approximation, (4), for Ar(2s) and Ar(2p). The
cross section has a minimum at p = 0 for the 2p case but
a maximum for 2s at the same point. This behavior is
characteristic of the state of the target, i.e. for an elec-
tron in an s state the most probable momentum is zero,
while this is the least probable momentum value for a p
electron [16,18,19]. The 2p case exhibits a maximum for
some value of p = p0 and then declines uniformly. If the
kinematics of our experiment are such that we can reach
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values of p > p0 and pmax is the maximum value of p that
can be obtained then we will find a local minimum in the
TDCS for ks = κ for which

pmax = ‖q− κ‖. (12)

Looking at (8) we see that the cross section is symmet-
ric about the momentum transfer direction, q, and goes
like 1

q4 as q → 0 in contradiction to the experimentally
observed 1

q2 [9,20,21]. This spurious behavior arises be-
cause we have neglected the effect of the atomic nucleus
on the slow electron in the final state but included it in
the initial. Indeed in the absence of any interaction the
initial and final states are not orthogonal and we have
therefore included a non physical auto-ionizing contribu-
tion. To correct for this we can assume that the outgoing
slow electron is in a continuum state of the ion. We calcu-
late this by treating the slow ejected electron as moving
in the static exchange potential of the ion and orthogonal-
ize this state to the bound state. This is the PWDWPW
case, with a distortion only on the slow electron. Then the
direct scattering amplitude becomes

fPWDWPW = (2π)−9/2

∫
d3rsd

3rf

×e−ikf ·rfχ−(ks, rs)
1

‖rf−rs‖e
ik0·rfψnlm(rs). (13)

We can still apply the Bethe relation, (5) to get

fPWDWPW =
4π

(2π)9/2q2

∫
d3rsχ

−(ks, rs)eiq·rsψnlm(rs).

(14)
If we again neglect exchange amplitude we have the 1st
Born approximation:

d3σ1stBorn

dΩfdΩsdE
= (2π)4

kfks

k0

∑

m

|fPWDWDW
nlm |2. (15)

We see immediately that the symmetry about the direc-
tion of momentum transfer is maintained and also if we
expand

eiq·rs = 1 + qrs cos µ+O(q2) (16)

where q·rs = qrs cosµ, then the orthogonality of ψnlm(rs)
and χ−(ks, rs) means that the TDCS has the correct q−2

behavior as q → 0. In Zhang et al. [6] it was argued that
the distorting effect of the atom, primarily the Coulomb
interaction with nucleus could not be neglected for any
of the electrons; to represent these effects they calculated
the wave function of the slow ejected electron in the static
exchange potential of the ion and the incoming and outgo-
ing electrons in the static exchange potential of the atom.
We will denote this approximation as DWDWDW, or just
DWBA, since this is what is usually meant by the DWBA.
We note

– a local exchange approximation of Furness-McCarthy
type, [12,20], is used to simplify the static exchange
calculation;

– both final state distorted waves are orthogonalized to
the ground state;

– no final state electron-electron interaction is included,
i.e. the approach is strictly first order in 1

‖rf−rs‖ . This
has been shown to have negligible effect [22];

– the Hartree Fock wave functions of [23] are used for
the target wave functions ψnlm.

In Figure 3 we show a comparison between the older ex-
periments from Hink and his collaborators [6] on Ar(2p)
and the very recent experiments for Mg(3s), [7], and the
DWBA (i.e. DWDWDW). We see for Ar that the theory
correctly predicts a binary peak which is split in the for-
ward direction and a recoil peak which is much larger than
the binary and also split. For Mg we have a single peak in
the direction of momentum transfer. We can understand
the splitting of the binary in that the minimum value oc-
curs in the region of 0 = k0−kf −ks exactly as we would
expect for a p state. We have a maximum at this point
for magnesium since the target electron is in an s state.
In order to better understanding the competing process
for ionization from a 2p state we look at a series of model
calculations. By switching on and off the distorting poten-
tials we can look at the effect of elastic scattering on the
incident, slow and fast electrons. Returning to (2) we de-
fine a series of model calculations for Ar(2p): Ef = 500 eV,
θf = 25◦, Es = 200 eV, Figure 4. These consist of the PW-
PWPW, the DWBA, PWDWPW, and DWPWPW. The
DWPWPW is where we have put a distortion of the fast
electron but left the slow and incoming electron as plane
waves. Note that in all cases we include exchange and that
the distorted waves are orthogonalized to the ground state
but the plane waves are not.

The PWPWPW case has a local minima when ks is in
the q and −q directions. These minima arise solely from
the 2p character of the wave function, as discussed above.
The effect of switching on the elastic scattering on the
slow ejected electron is to significantly enhance the recoil
peak in the PWDWPW case. If however we allow only for
elastic scattering of the incoming and fast electrons but
not the slow (DWPWDW) the recoil remains small but
the binary is reduced. The effect of including elastic scat-
tering on all free particles, (DWBA), is to further enhance
the recoil over the binary, as compared to the PWDWPW
case. The splitting of the recoil peak is a much clearer
structure in the DWBA and should be readily visible in
an experiment. The split binary and recoil is seen in all the
calculations. We see that distortion is needed in all chan-
nels to maximize this effect. It should be remembered that
when we included distorted waves in all channels we al-
low not only for elastic in these channels but also for the
distorted waves to interfere [24]. The structures predicted
here are similar to those found in the DWBA calculations
of [6]. The experimental results of [6,7] are certainly con-
sistent with the DWBA (see Figs. 3, 5). Unfortunately for
the choice of kinematics used by [7] it is impossible to dis-
tinguish between the simple PWDWPW and the DWBA
with a relative measurement.

In Figure 5 we show a comparison between the DWBA
and PWDWPW calculations and the experimental data
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Fig. 3. (a) TDCS for Ar(2p) E0 = 1949 eV, Ef = 1550 eV,
θf = 15.6◦, experiment and theory from [6]. (b) TDCS for
AR(2p) E0 = 1949 eV, Ef = 1200 eV, θf = 30◦, experiment
and theory from [6]. (c) TDCS for Mg(3s), E0 = 1027.6, Ef =
1000 eV, θf = 5◦, experiment from [7]. Solid curve is DWD-
WDW (i.e. DWBA) for all three cases.
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Fig. 4. TDCS (atomic units) for Ar(2p): Ef = 500 eV, θf =
25◦, Es = 200 eV. Solid curve is DWBA, dotted is DWPWDW
(distorted waves in the incident and fast channels), dashed
is 1st Born, and dash and dotted is a plane wave 1st Born
calculation.

of [7], for Ar(2s) and Mg(2p). The experimental data, be-
ing relative, has been normalized to the DWBA. Agree-
ment with the DWBA is good, but had we fitted to the
PWDWPW agreement would have been equally good.
There is a large difference in absolute size between the
two approximations in the Ar(2s) case but the results for
the Mg(2p) are remarkably close both in shape and mag-
nitude. However by making a relatively small change in
parameters we can produce cross sections which should
be easily distinguishable (see Fig. 6).

It would be extremely useful to have experimental data
on an absolute scale. However, as mentioned above, this is
probably beyond present experimental capabilities. Hence
it is of value to seek out kinematics where the difference
between the different theoretical approaches are apparent
in the shape of the TDCS, as we have done above. It is
also important however to look for a way to systematically
inter-normalize different relative measurements. This is
particularly true for s states where even in the DWBA the
TDCS is relatively structureless. Here the difference be-
tween the theories must of course lie in the relative size of
the cross section. Several methods for accomplishing this
have been suggested [25] in the past. We suggest working
in the coplanar constant Θfs geometry [26]. In this ge-
ometry the detectors for the two final state electrons are
moved simultaneously so that their mutual angle Θfs is
held constant, see Figure 7, where the TDCS is plotted as
a function of θs. The effect of performing such an experi-
ment would allow one to place all the coplanar asymmetric
measurements done for the same impact and existing ener-
gies on the same scale and thus permit a welcome if more
severe test of theory.

2 Summary

We have considered the underlying theory for the dis-
torted wave Born approximation and shown that while it
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Fig. 5. TDCS (atomic units) for panel (a) Ar(2s): Ef =
1000 eV, θf = 12◦, Es = 20 eV; for panel (b) Mg(2p):
E0 = 1078 eV, Ef = 1000 eV, θf = 7◦. Solid line DWBA
(i.e. DWDWDW), dotted plane wave 1st Born. Experiment
from [7].

generally gives good agreement with the available exper-
imental data, the nature of this data being both relative
and over a limited angular range is such that in many cases
one is not able to unambiguously distinguish between dif-
ferent theoretical models. We illustrated the idea by con-
sidering the very recent experimental results, [7], where
the available experimental data is in good agreement with
both the 1st Born approximation and the DWBA and
showed that by relatively small change in the parame-
ters we could arrive at a situation where a relative exper-
iment should be able to clearly differentiate. We further
suggest performing complementary measurements in both
coplanar asymmetric and coplanar constant Θfs geome-
tries, which would allow an inter-normalization between
different measurements. We illustrated the idea by con-
sidering Ar(2s). We recommend this measurements to our
experimental colleagues.
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Fig. 6. Coplanar asymmetric geometry for Mg(2p): E0 =
1153 eV, Ef = 1000 eV, θf = 15◦. Solid curve is DWBA,
dotted curve is 1st Born.
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Fig. 7. Coplanar θfs geometry the mutual angle between the
fast and slow scattered electrons is held constant and both are
rotated in anti-clockwise direction about the beam direction.

We are most grateful to Dr Lorenzo Avaldi for supplying us
with his experimental data prior to journal publication.

Appendix

Here we present a simple derivation of (10) Starting from
the general addition theorem for spherical harmonics, [27],

Pl(cos γ) =
4π

2l + 1

m∑

m=−l

Y ∗
lm(θ′, φ′)Ylm(θ, φ) (17)

where

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (18)

consequently if θ = θ′, φ = φ′ (17) becomes

Pl(1) =
4π

2l + 1

m∑

m=−l

|Ylm(θ, φ)|2 (19)

but, [28], Pl(1) = 1 ∀ l hence (10) immediately follows.
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